
Seamless Integration of Two Approaches to
Dynamic Formal Verification of MPI Programs

Anh Vo, Ganesh Gopalakrishnan, Sarvani Vakkalanka, Alan Humphrey and Christopher Derrick
School of Computing, University of Utah, UT, USA
{avo,ganesh,sarvani,ahumphre,cderrick}@cs.utah.edu

Abstract
We have built two tools for dynamically verifying MPI programs
– one called ISP and the other called DMA. Both these tools are
aimed at formally analyzing the executions of an MPI programs
by running executions, analyzing the actual MPI operation depen-
dencies that manifest, and rerunning executions to cover the de-
pendency space. ISP implements an MPI-specific dynamic partial
order reduction algorithm called POE while DMA implements a
new distributed algorithm based on logical clocks. While ISP is
able to scale up to tens of processes on medium-sized applications
and offer more precise coverage of the dependency space, DMA
is designed to scale up to thousands of processes on large appli-
cations, offering reduced (yet formally characterizable) coverage.
In this position paper, we briefly describe ISP and DMA and ex-
plain the need to maintain both these tools – yet seamlessly inte-
grate them within a common integration platform, with our current
choice being Eclipse Parallel Tools Platform (PTP).

1. Introduction
Anyone who writes any program – concurrent or not – has to test
it. Focussing on message passing MPI [1] based deterministic pro-
grams, it is well known that they offer a very high degree of isola-
tion between processes, with all process actions being independent
across processes. For such programs, conventional testing is quite
effective, as running one schedule is equivalent to running any other
schedule. However, in programs with non-deterministic MPI calls,
it is known how skewed the matches can be – e.g., see [2] where
we demonstrated unacceptable bug omission rates on the Umpire
test suite when employing conventional testing methods. For such
programs, issue-time modulation methods that depend on inserting
non-deterministic sleep durations (e.g., [3, 4]) are not particularly
effective because altering the issue time of MPI calls is often not
going to change the way in which racing MPI sends find matches
with MPI non-deterministic receives deep inside the MPI runtime.
These delays also un-necessarily slow down the entire MPI pro-
gram. Last but not least, nothing formal can be stated when a delay-
based testing method finds no violations – there could still be seri-
ous bugs left!

Beginning with [5, 6] we demonstrated a new method for active
testing of MPI programs that is tantamount to the formal process

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

Copyright c© ACM [to be supplied]. . . $5.00

of partial order reduction that computes persistent sets [7, 8] at
every state. This technique has been implemented as a tool called
ISP that has been widely demonstrated. Recently, we have built the
Graphical Explorer of Message passing (GEM) tool [9] that is now
part of the Parallel Tools Platform [10] end user runtime.

Figure 1. Overview of ISP

P0 P1 P2

Isend(to : 1, 22); Irecv(from : ∗, x) Barrier;
Barrier; Barrier; Isend(to : 1, 33);

if(x == 33)bug;

Figure 2. MPI Example

Given an example such as in Figure 2, the ISP tool (Figure 1)
seeks to discover all non-deterministic matches. If P2’s Isend can
match P1’s Irecv, we have a bug – but can this match occur?
The answer is yes: first, let P0’s Isend and P1’s Irecv be issued;
then the execution is allowed to cross the Barrier calls; after
that, P2’s Isend can be issued. At this point, the MPI runtime
faces a non-deterministic choice of matching either Isend. Notice
that this particular execution sequence can be obtained only if the
Barrier calls are allowed to match before the Irecv matches.
Existing MPI testing tools cannot exert such fine control over
MPI executions. Thanks to the theory of happens before that we
introduced in [11, 8], ISP can exert this fine degree of execution
control.

In more detail, by interposing a scheduler (Figure 1), ISP is able
to safely reorder, at runtime, MPI calls issued by the program. In
our present example, ISP’s scheduler (i) intercepts all MPI calls
coming to it in program order, (ii) dynamically reorders the calls
going into the MPI runtime (ISP’s scheduler sends Barriers first;
this is correct according to the MPI semantics), and (iii) at that point
discovers the non-determinism.

Once ISP determines that two matches must be considered, it
re-executes (replays from the beginning) the program in Figure 2

Executable

Proc1

Proc2

……
Procn

Potential
Matches

Run

Native MPI

MPI
Program

DMA -
PnMPI

modules

Schedule
Generator

Epoch
Decisions

Rerun

Figure 3. DMA Framework

twice over: once where P0’s Isend is considered, and the sec-
ond time where P2’s Isend is considered. But in order to en-
sure that these matches do occur, ISP must dynamically rewrite
Irecv(from : ∗) into Irecv(from : 0) and Irecv(from : 2) in
these replays. If we did not so determinize the Irecvs, but instead
issued Irecv(from : ∗) into the MPI runtime, such a call may
match Isend from another process, say P3. In summary, (i) ISP
achieves discovers the maximal extent of non-determinism through
dynamic MPI call reordering, (ii) it achieves scheduling control of
relevant interleavings by dynamic instruction rewriting. While pur-
suing relevant interleavings, ISP detects the following error con-
ditions: (i) deadlocks, (ii) resource leaks (e.g., MPI object leaks),
and (iii) violations of C assertions placed in the code. ISP re-runs
the code through all the relevant interleavings. For the given MPI
program operating under the given input data set, ISP guarantees to
find all deadlocks, resource leaks, and violations of local assertions
(e.g., C assert calls placed in the code).

2. Scalable Dynamic Verification
It is clear that ISP’s approach will scale only as much as its central-
ized scheduler will allow. This has lead us to totally re-design the
detemination of happens-before by developing a decentralized al-
gorithm that uses logical clocks (Lamport clocks or Vector clocks).
The architecture of this tool is shown in Figure 3.
DMA works as follows:

• All processes maintain “time” or “causality” through Lamport
Clocks (which are a frequently used optimization in lieu of the
more precise but expensive Vector Clocks.

• Each MPI call is trapped (using PNMPI [12] instrumentation)
at the node where the call originates. For deterministic receive
operations, the local process updates its own Lamport clock; for
deterministic sends, it sends the latest Lamport clock along with
the message payload using piggy-back messages. All Lamport
clock exchanges occur through piggy-back messages.

• Each non-deterministic receive advances the Lamport clock
of the local process. During execution, this receive will have
matched one of the MPI sends targeting this process (else we
would have caught a deadlock and reported it). However, each
send that does not match this receive but impinges on the issu-
ing process is analyzed to see if it is causally concurrent (com-
puted using Lamport clocks). If so, it is recorded as a Potential
Match in a file.

Figure 4. Analyzer View on ParMETIS

• At the end of the initial execution, DMA’s scheduler computes
the Epoch Decisions file which has the information to force
alternate matches. Now, DMA’s scheduler proceeds to carry out
a depth-first walk over all Epoch Decisions (replay alternative
matches at the last step; then at the penultimate step; and so on
till the Epoch Decisions are exhausted).

While our work on DMA is less than six months old, it has already
shown considerable promise in terms of large-scale dynamic veri-
fication. We are also beginning to understand the tradeoffs between
DMA and ISP. While DMA can handle many every-day examples,
it cannot for instance yet handle the example in Figure 2 because of
the fact that when P1’s Barrier is encountered, the Wait of Irecv
has not yet been seen. Yet, seeing the non-deterministic Irecv of
P2 would have made P1’s clock go up. However Barrier calls
for taking the global maximum of the Lamport clock values across
processes. Thus in effect, the increased clock of P1 incorrectly par-
ticipates in the global max operation which is then broadcast to all
processes. Scalable solutions to this (and other situations) are un-
der consideration. We also know of other situations where instead
of Lamport clocks, Vector clocks must be employed for more pre-
cise verification.

3. Integration of ISP and DMA within GEM
We provide a view of the GEM integration framework in Figure 4.
This integration framework provides very intuitive feedback to MPI
programmers about the formal verification results returned by ISP
(fully explained in our technical report at [9]). We plan to maintain
both ISP and GEM, and integrate them seamlessly within GEM.
This will allow the strengths of the tools to be used in mutually
complementary ways.

Given that we can schedule jobs on cluster machines using the
Eclipse PTP Parallel Runtime Perspective shown in Figure 5, a de-
signer will have one cockpit to drive formal dynamic verification
tools from. This opens up exciting possibilities for studying how
tools that effect meaningful coverage/scalability tradeoffs can be
synergistically combined – and perhaps also combined with other
PTP based tools (such as for performance evaluation and conven-
tional testing methods). For example, designers may be able to gen-
erate scenarios of interest by running ISP, and then dispatch them
for in-depth analysis at scale using DMA. This would represent a
nice combination of approaches where the expensive (and harder to
use) cluster machine is not an essential prerequisite to have access
to before verification at scale can be conducted. Other techniques
such as [13] may also be integrated into this tool framework.

Figure 5. Eclipse PTP Parallel Runtime Perspective

Last but not least with “cloud computing” resources likely to
become widely available, one can also imagine scenarios where we
partition the state space of the models being verified into parts that
can be separately examined on the cloud. Again, the mindset here
is to use production-quality cluster supercomputers only for actual
long-lasting high-performance simulation runs, while using other
machine types such as the cloud as debugging servers.
Acknowledgements: The authors like to thank Bronis R. de Supin-
ski, Martin Schulz, Greg Bronevetsky and Beth R. Tibbitts for ideas
and encouragement.

References
[1] “MPI 2.1 Standard,” MPI Standard 2.1, http://www.mpi-forum.org/

docs/.

[2] “Test results comparing isp, marmot,and mpirun,” http://www.cs.
utah.edu/fv/ISP Tests.

[3] S. Copty and S. Ur, “Toward automatic concurrent debugging via
minimal program mutant generation with aspectj,” Electr. Notes
Theor. Comput. Sci., vol. 174, no. 9, pp. 151–165, 2007.

[4] R. Vuduc, M. Schulz, D. Quinlan, B. de Supinski, and A. Sæbjörnsen,
“Improving distributed memory applications testing by message
perturbation,” in Proc. 4th Parallel and Distributed Testing and
Debugging (PADTAD) Workshop, at the International Symposium on
Software Testing and Analysis, Portland, ME, USA, July 2006.

[5] S. Vakkalanka, G. Gopalakrishnan, and R. M. Kirby, “Dynamic
Verification of MPI Programs with Reductions in Presence of Split
Operations and Relaxed Orderings,” in Computer Aided Verification
(CAV 2008), 2008, pp. 66–79.

[6] A. Vo, S. Vakkalanka, M. DeLisi, G. Gopalakrishnan, R. M. Kirby,
, and R. Thakur, “Formal verification of practical mpi programs,” in
Principles and Practices of Parallel Programming (PPoPP), 2009,
pp. 261–269.

[7] E. M. Clarke, O. Grumberg, and D. A. Peled, Model Checking. MIT
Press, 2000.

[8] S. Vakkalanka, Efficient Dynamic Verification Algorithms for MPI
Applications. PhD Dissertation, 2010, http://www.cs.utah.edu/
∼sarvani/dissertation.html.

[9] “Gem - isp eclipse plugin,” http://www.cs.utah.edu/formal
verification/ISP-Eclipse.

[10] “The Eclipse Parallel Tools Platform,” http://www.eclipse.org/ptp.

[11] S. Vakkalanka, A. Vo, G. Gopalakrishnan, and R. M. Kirby, “Reduced
execution semantics of mpi: From theory to practice,” in FM 2009,

Nov. 2009, pp. 724–740.

[12] M. Schulz and B. R. de Supinski, “Pnmpi tools: a whole lot greater
than the sum of their parts,” in Proceedings of the 2007 ACM/IEEE
conference on Supercomputing, 2007, iSBN:978-1-59593-764-3.

[13] T. Hilbrich, B. R. de Supinski, M. Schulz, and M. S. Müller, “A
graph based approach for MPI deadlock detection,” in ICS 2009, pp.
296–305.

